China supplier Spur Drive Transmission Planetary Epicyclic Gear for Machinery Parts spiral bevel gear

Product Description

Product Description

Product Parameters

Item Spur Gear Axle Shaft
Material 4140,4340,40Cr,42Crmo,42Crmo4,20Cr,20CrMnti, 20Crmo,35Crmo
OEM NO Customize
Certification ISO/TS16949
Test Requirement Magnetic Powder Test, Hardness Test, Dimension Test
Color Paint , Natural Finish ,Machining All Around
Material Aluminum: 5000series(5052…)/6000series(6061…)/7000series(7075…)
Steel: Carbon Steel,Middle Steel,Steel Alloy,etc.
Stainess Steel: 303/304/316,etc.
Copper/Brass/Bronze/Red Copper,etc.
Plastic:ABS,PP,PC,Nylon,Delrin(POM),Bakelite,etc.
Size According to Customer’s drawing or samples
Process CNC machining,Turning,Milling,Stamping,Grinding,Welding,Wire Injection,Cutting,etc.
Tolerance ≥+/-0.03mm
Surface Treatment (Sandblast)&(Hard)&(Color)Anodizing,(Chrome,Nickel,Zinc…)Plating,Painting,Powder Coating,Polishing,Blackened,Hardened,Lasering,Engraving,etc.
File Formats ProE,SolidWorks,UG,CAD,PDF(IGS,X-T,STP,STL)
Sample Available
Packing Spline protect cover ,Wood box ,Waterproof membrane; Or per customers’ requirements.

 

Our Advantages

Why Choose US ???

1. Equipment :

Our company boasts all necessary production equipment,
including Hydraulic press machines, Japanese CNC lathe (TAKISAWA), Korean gear hobbing machine (I SNT), gear shaping machine, machining center, CNC grinder, heat treatment line etc.

2. Processing precision:

We are a professional gear & gear shafts manufacturer. Our gears are around 6-7 grade in mass production.

3. Company:

We have 90 employees, including 10 technical staffs. Covering an area of 20000 square meters.

4. Certification :

Oue company has passed ISO 14001 and TS16949

5.Sample service :

We provide free sample for confirmation and customer bears the freight charges

6.OEM service :

Having our own factory and professional technicians,we welcome OEM orders as well.We can design and produce the specific product you need according to your detail information

 

Cooperation Partner

Company Profile

Our Featured Products

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Type: Circular Gear
Yield: 5, 000PCS / Month
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

epicyclic gear

What are the benefits of using epicyclic gears in wind turbines?

Epicyclic gears, also known as planetary gears, offer several benefits when used in wind turbines. Here’s a detailed explanation:

1. Compact and Lightweight Design:

Epicyclic gears provide a compact and lightweight design for wind turbines. This is particularly advantageous in the nacelle, where space and weight constraints are critical. The compactness of epicyclic gears allows for more efficient use of available space and reduces the overall weight of the turbine, which simplifies transportation, installation, and maintenance processes.

2. High Power Density:

Epicyclic gears offer high power density, which means they can handle a significant amount of power transmission in a relatively small volume. This is particularly beneficial in wind turbines, where the generation of large amounts of power is required. The high power density of epicyclic gears allows for the efficient transfer of power from the rotor to the generator.

3. Load Distribution:

The arrangement of multiple planet gears in an epicyclic gear system helps distribute the load evenly across the gear teeth. This load distribution minimizes stress concentration on individual gear teeth, reducing the risk of premature wear or failure. In wind turbines, where the loads can be substantial, epicyclic gears contribute to improved durability and reliability.

4. Variable Speed Operation:

Epicyclic gears facilitate variable speed operation in wind turbines. By adjusting the gear ratio, the rotational speed of the generator can be optimized to match the varying wind conditions. This allows the turbine to operate at its peak efficiency, maximizing power generation and improving overall energy conversion.

5. Torque Limiting and Overload Protection:

The design of epicyclic gears allows for torque limiting and overload protection in wind turbines. By incorporating torque limiters or automatic shutdown mechanisms, excessive loads or sudden gusts of wind can be mitigated. This protects the gearbox and other components from damage and extends their operational lifespan.

6. Redundancy and Fault Tolerance:

Epicyclic gears can be configured in redundant arrangements, providing fault tolerance in wind turbines. By using multiple sets of gears, if one gear set fails, the remaining gears can continue to operate, ensuring the functionality of the turbine. This redundancy enhances the reliability and availability of the wind turbine, reducing downtime and maintenance costs.

Overall, the benefits of using epicyclic gears in wind turbines include compactness, high power density, load distribution, variable speed operation, torque limiting, and fault tolerance. These advantages contribute to the efficient and reliable operation of wind turbines, promoting renewable energy generation.

epicyclic gear

Can you explain the function of an epicyclic gear system in a helicopter’s rotor?

An epicyclic gear system, also known as a planetary gear system, plays a crucial function in a helicopter’s rotor. Here’s a detailed explanation:

1. Power Transmission:

The primary function of the epicyclic gear system in a helicopter’s rotor is to transmit power from the engine to the rotor blades. The system acts as a mechanical interface between the engine and the rotor, transferring torque and rotational motion effectively.

2. Gear Reduction:

The epicyclic gear system allows for gear reduction, which is essential in a helicopter rotor system. The high-speed rotation of the engine is converted into a lower rotational speed but increased torque at the rotor. This gear reduction enables the rotor blades to achieve the necessary lift and control, even with the high rotational speed of the engine.

3. Speed Control:

The epicyclic gear system provides speed control capabilities for the helicopter’s rotor. By adjusting the gear ratios within the system, the rotational speed of the rotor blades can be controlled. This speed control is vital for various flight maneuvers, such as takeoff, landing, hovering, and forward flight.

4. Torque Distribution:

An important function of the epicyclic gear system is to distribute torque evenly among the rotor blades. The system ensures that the torque generated by the engine is evenly distributed across all the blades, resulting in balanced lift and stable flight characteristics.

5. Autorotation:

The epicyclic gear system also enables autorotation, which is a critical safety feature in helicopters. During an engine failure, the system allows the rotor blades to continue rotating solely due to the upward airflow. This autorotation provides a controlled descent and allows the pilot to maintain some level of control over the helicopter’s flight path during an emergency.

6. Feathering:

Feathering refers to the ability to adjust the pitch angle of the rotor blades collectively. The epicyclic gear system incorporates mechanisms that enable feathering, allowing the pilot to change the pitch angle of all the blades simultaneously. This adjustment is used to optimize the helicopter’s performance in different flight conditions, such as reducing drag or increasing lift.

7. Mechanical Isolation:

The epicyclic gear system provides mechanical isolation between the engine and the rotor blades. This isolation helps dampen vibrations and reduces the transmission of engine-induced vibrations to the rotor system. It contributes to smoother operation, improved comfort, and reduced stress on the overall helicopter structure.

In summary, the function of an epicyclic gear system in a helicopter’s rotor includes power transmission, gear reduction, speed control, torque distribution, autorotation capability, feathering control, and mechanical isolation. These functions are critical for achieving efficient and safe helicopter operations, enabling lift generation, flight control, and maneuverability.

epicyclic gear

How do epicyclic gears contribute to power transmission in machinery?

Epicyclic gears, also known as planetary gears, play a crucial role in power transmission within machinery. Here’s a detailed explanation of their contribution:

1. Gear Reduction:

Epicyclic gears allow for significant gear reduction, which is the process of reducing the rotational speed of the output shaft compared to the input shaft. By configuring the gear engagement and gear ratios, epicyclic gears can achieve high reduction ratios, enabling machinery to operate at lower speeds while maintaining high torque output.

2. Torque Multiplication:

Epicyclic gears also provide torque multiplication, which is the process of increasing the torque output compared to the torque applied at the input. By utilizing the gear ratios and gear arrangement, epicyclic gears can effectively multiply the torque, allowing machinery to generate higher rotational force for heavy-duty applications.

3. Compactness:

Epicyclic gears offer a compact design, making them ideal for applications where space is limited. The arrangement of the sun gear, planet gears, and annular gear allows for a high gear reduction or multiplication within a small footprint. This compactness is particularly advantageous in industries such as automotive, aerospace, and robotics, where efficient power transmission is required in confined spaces.

4. Versatile Gear Ratios:

Epicyclic gears provide a wide range of gear ratios, which allows machinery to adapt to different operational requirements. By selecting the appropriate combination of gear engagement and gear ratios, the speed and torque characteristics of the machinery can be tailored to specific applications. This versatility in gear ratios enhances the flexibility and performance of machinery across various industries.

5. Precise Control:

Epicyclic gears enable precise control over power transmission within machinery. The combination of rotational and orbital motion in planetary gear sets allows for smooth and precise adjustments of speed and torque. This level of control is crucial in applications that require accurate positioning, speed regulation, and responsive power transfer.

6. Multiple Functions:

Epicyclic gears offer various functions beyond power transmission. They can be utilized for directional changes, torque splitting, braking, and speed synchronization. These additional functions enhance the versatility and efficiency of machinery, allowing for complex operations and improved overall performance.

Overall, epicyclic gears contribute to power transmission in machinery by providing gear reduction, torque multiplication, compactness, versatile gear ratios, precise control, and multiple functions. Their unique design and capabilities make them a valuable component in a wide range of industries and applications.

China supplier Spur Drive Transmission Planetary Epicyclic Gear for Machinery Parts spiral bevel gearChina supplier Spur Drive Transmission Planetary Epicyclic Gear for Machinery Parts spiral bevel gear
editor by CX 2023-11-02